
HAWKEYE: Adversarial Example Detection through Ensemble Detectors

Abstract
Adversarial examples (AEs) are images that can mislead deep
neural network (DNN) classifiers via introducing slight per-
turbations into original images. Recent work has shown that
detecting AEs can be more effective than making the DNN ro-
bust against AEs. However, the state-of-the-art AE detection
shows a high false positive rate, thereby rejecting a consider-
able fraction of normal images, and appears easy to bypass
through reverse engineering attacks. To address this issue,
we propose HAWKEYE, which is a separate classifier that
analyzes the output layer of the DNN and detects AEs by
comparing to the output of a quantized version of the input
image similar to prior work. However, instead of merely com-
puting a simple statistic and then thresholding to detect AEs,
we train a separate simple classifier to distinguish the varia-
tion characteristics of the difference between the DNN output
on an input image and the quantized reference image. By
using a classifier, the detection rate is higher, and thus we can
cascade our AE detectors that are trained for different quanti-
zation step sizes to significantly reduce the false positive rate,
while keeping the detection rate high. We provide extensive
empirical evaluations of HAWKEYE under various scenarios
including white-box attacks against the detector itself.

1 Introduction

Image classification problems have achieved great success
using deep neural networks (DNNs). However, DNN clas-
sifiers have a widely exploited vulnerability such that small
perturbations to the input that humans may not recognize can
drastically change their output [6, 14, 23]. This vulnerability
is critical since it means that for example, an adversary can
make an autonomous vehicle mis-recognize a stop sign as a
yield sign [24].

Such perturbed inputs are called adversarial examples
(AEs). Adversaries can indeed make AEs with minimal pertur-
bation, utilizing the gradient of the training cost function or
the DNN model output (see autorefsec:background) [6,15,25].

In order to defend against AEs, there have been many solu-
tions proposed [6, 8, 21, 23]. Most of these defense mecha-
nisms are modifying training methods or DNN architectures
to hide the gradients near input data points so that it is harder
for adversaries to generate AEs. However, these methods are
not effective enough against AEs being successful, especially
when the perturbation level is high (though still not recog-
nizable to humans) [2, 6, 13]. Even if the application DNN
parameters are hidden, adversaries can mimic the applica-
tion DNN with another similar DNN and bypass the defense
mechanisms [22, 24, 30].

Due to this limitation of existing defenses, recent work
has turned to detect AEs rather than making the DNN be
robust against carefully synthesized AEs [7, 19, 28, 29, 32].
Detecting AEs is usually done by finding statistical outliers or
training separate sub-networks that can distinguish between
AEs and normal images. The state-of-the-art method called
Feature Squeezing (FS) [32] detects AEs by first forming
a reduced-noise reference image via feature squeezers such
as quantization or blur. The reference image is intended to
be insensitive to the perturbation noise added by adversaries.
Thus, whether or not an input image contains the perturbation
noise, the reference image is approximately the same. Then,
FS passes both the original image and the reference image
through the original DNN, which we will refer to as the “ap-
plication DNN” and computes the L1 difference between the
two outputs (corresponding to the original and the reference
images). If the L1 difference is greater than a threshold, then
FS classifies the example as adversarial. The main hypothesis
behind this approach is that the output difference between
the original and reference image will be small for benign
examples and large for adversarial examples. While FS can
achieve a high detection rate (DR), it comes at a high false
positive rate (FPR), thereby rejecting a considerable fraction
of benign images. For example, FS suffers from 10% lower
DR for FashionMNIST with similar FPR, and 2X the FPR for
CIFAR-10 with similar DR.

To reduce the FPR while keeping a high DR, we propose
HAWKEYE that takes a similar approach to FS but differs in
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Figure 1: The overall structure of HAWKEYE is similar to feature squeezing (FS) but differs primarily in that the AE detector is a more
complex and better-performing classifier instead of the simple threshold that is used in FS. Another less important difference is that we

take the difference of the logit vectors (i.e., output before softmax) rather than the probability vectors. Finally, in contrast to the OR
aggregation in FS, we propose a novel AND aggregation of detectors to decrease the FPR enabled by our higher detection rates as

detailed in § 3.4.

two foundational ways. Figure 1 shows the overall workflow
of HAWKEYE. The two design differences that lead to signifi-
cant improvement in resilience to attacks are: (1) HAWKEYE
uses a simple machine learning classifier for detecting AEs
rather than merely detection based on a difference threshold
between the binarized outputs of the model for the original and
the reference images, and (2) HAWKEYE cascades multiple
detectors via AND aggregation rather than OR aggregation as
in FS. By using a data-driven classifier, HAWKEYE discovers
patterns beyond simple distance computation and thus can
achieve a much better trade-off between DR and FPR com-
pared to FS. The key departure from previous AE detection
methods based on machine learning is that we consider quite
simple classifiers only on the output layer—in contrast to [19]
that apply multiple complex classifiers to the middle layers
which can have high dimensionality and thus require many
samples to train. Moreover, because the classifier can achieve
high DR (near 0.98 in some cases), we can cascade multiple
detectors via AND aggregation, i.e., an example is deemed
adversarial if ALL detectors deem the example adversarial;
because FS struggles to achieve such a high DR with low
FPR, it used OR aggregation, i.e., if ANY detector in a cas-
cade deemed the example adversarial, then the example was
deemed adversarial.

Because quantization is a widely used method to remove
noise in image or signals in general [17, 32], we focus on the
quantization feature squeezer through other feature squeezers
such as blur or median filtering could be used as in FS [32].
We confirm empirically that cascading multiple AE detectors,
or AEDs for short, with different quantization levels (even
trained on the same training corpus) can significantly reduce
the FPR without degrading the DR significantly. Additionally,
HAWKEYE does not require any modification to the appli-
cation DNN. Due to the difficulty of training an application
DNN from scratch, this is often a desired characteristic. Like
other AE detection methods, HAWKEYE is orthogonal to prior
work whose focus is modifying a DNN to be robust against
AEs by various methods such as adversarial training or gradi-
ent masking. Thus, it can be used together with such defense
mechanisms to achieve better protection. We make the fol-
lowing contributions in this paper:

(1) We propose leveraging simple data-driven machine learn-
ing classifiers for detecting AEs that do not rely on any spe-
cific characteristic of the image or its perturbation. We show
that by training even a simple machine learning classifier
is highly effective in detecting adversarial images while ig-
noring benign images. In particular, we use both a simple
interpretable Gaussian Bayes classifier and a simple neural
network (much simpler than the original DNN). Again, the
key departure from previous AE detection methods based on
machine learning is that we consider simple classifiers only
on the output layer—which only requires a relatively small
number of AEs, as little as 100 AEs for the Gaussian Bayes
detector.
(2) To further reduce FPR, we propose cascading AEDs via
AND aggregation, where the different AEDs are trained on
different quantization step sizes. We see that by intelligently
choosing the different quantization steps, we can produce
variants of AEDs, such that cascaded detection can signifi-
cantly reduce the FPR compared to the FPR of an individual
AED, while keeping the DR high. The main insight for this
improved performance is that there is little correlation among
the AEs that each AED detects.
(3) We demonstrate empirically that HAWKEYE can be fit with
a relatively small number of AEs, can generalize across attack
methods (i.e., train on one AE method but still detect another
AE method), and can be resilient to detector white-box attacks
(i.e., where the adversary knows the parameters of the AED)
if randomization is used. For example, HAWKEYE-GB only
needs 100 AEs to perform well and HAWKEYE trained on
a simple attack method (FGSM) can still achieve more than
90% detection rate on other attacks.
(4) We extensively evaluate HAWKEYE and Feature Squeez-
ing (FS) [32] as baseline on widely used datasets, Fash-
ionMNIST [31], CIFAR10 [12], and ImageNet [3] with the
FGSM [6], PGD [15], and Carlini-Wagner L2 [2] attacks.
We show that compared to the state-of-the-art detector FS,
HAWKEYE achieves lower FPR (1% on FashionMNIST, 11%
on CIFAR-10 and 7% on ImageNet) and higher DR (more
than 90%)—where FS has 1.2% FPR on FashionMNIST,
21.3% on CIFAR-10, and unacceptable results on ImageNet.
Furthermore, by cascading two detectors, our FPR is 0.4% in
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FashionMNIST, 7.3% in CIFAR-10, and 2.1% in ImageNet.
The rest of the paper is organized as follows. § 2 first

reviews popular methods to generate AEs and the state-of-the-
art AE detection scheme, introducing notations and concepts
we use. Then, we propose our solution in § 3. Experimental
results are given in § 4. In § 5, we describe the previous work
that is related, but not directly overlapped to our work and
discuss some possible extensions.

2 Background

For an image denoted by x, the application DNN F esti-
mates the probabilities of each class: F(x) = σ(G(x)) where
G(x) ∈ RK is a DNN that produces the logit vector (i.e., un-
normalized prediction values for each class), K is the number
of classes, and σ(x) j =

exp(x j)

∑ j′ exp(x j′ )
is the softmax function

which converts logit vectors to normalized probability vec-
tors. Given a training dataset inputs x and true class labels
y ∈ {1,2, . . . ,K}, the model F(x) is usually trained via the
following optimization problem:

min
F

n

∑
i=1

J(F(xi),yi) = min
G

n

∑
i=1

J(σ(G(xi)),yi) (1)

where J is the cross entropy loss defined as

J(x,y) =
K

∑
j=1

I(y = j) log[F(x)] j = log[F(x)]y . (2)

In particular, we note that FS operates on the probability
vectors, i.e., F(x), while we operate on the unnormalized
logit vectors G(x) as seen in Figure 1 and discussed in more
detail in § 3. The label predicted by a classifier is L(x), which
is the index of the largest probability, i.e.,

L(x) = arg max
i∈{1,2,...,K}

[F(x)]i. (3)

When L(x) matches the true index y, we say that the prediction
is correct.

2.1 Generating Adversarial Examples
Given an input x, an adversarial example (AE) is defined as
an altered input:

x∗ = x+δ, (4)

such that L(x∗) 6= L(x) (i.e., the classification is different than
the original) but the perturbation δ is small (usually unde-
tectable by human eyes). Here, we describe representative
methods to generate AEs, which we use in our experiments.

• Fast gradient sign method (FGSM) [6] perturbs all
input pixels by the same quantity ε in the direction of a

gradient sign, i.e.,

x∗ = x+ ε sign
(

∂J(x,y)
∂x

)
, (5)

where sign(v) is 1 if v > 0, -1 if v < 0, and 0 if v = 0. In
other words, FGSM attempts to make an AE by adding
a noise to each pixel in the direction that maximizes
the increment in the cost function. The value of ε is
chosen to be a multiple of ε0, which corresponds to the
magnitude of one-bit change in a pixel. We use the term

“perturbation level” for ε.

• Iterative FGSM (I-FGSM) [14] iteratively applies
FGSM (say, N times) with the minimal amount of per-
turbation at a time as follows:

xn+1 = ClipX ,ε

{
xn +α sign

(
∂J(xn,y)

∂xn

)}
, (6)

with x0 = x and xN = x∗. Here, Clip{·} denotes a pixel-
wise clipping operation, which ensures that the pixel
value stays in the ε-vicinity of the original value, and in
the valid range. The I-FGSM usually creates AEs more
successfully than FGSM for the same ε because it can
fine-tune the perturbation in one iteration based on the
result from the previous iteration.

• PGD [15] is a first-order method which is very simi-
lar to I-FGSM. The main difference is PGD randomly
initializes to a point x0 within the L norm ball around x.

• Carlini-Wagner [2] minimizes a loss function contain-
ing two parts: the first part is the perturbation level,
which is usually an Lp norm of δ while the second part
contains the term that tries to flip the prediction, i.e.,

minimize
δ

‖δ‖p + c ·h(x+δ) , (7)

where h is a specially designed function (see [2] for exact
forms) to encourage label flipping such that h(x+δ)< 0
only if L(x∗) 6= L(x).

2.2 Current Defense Methods
While there are many possible adversarial defenses, we focus
this background section on detecting adversarial examples
and discuss other possible defenses in § 5.

2.2.1 Defenses by Detecting Adversarial Examples

Grosse et al. [7] proposed a statistical test to detect AEs
from training dataset using maximum mean discrepancy. This
method requires a large set of normal images and their corre-
sponding AEs, and is not capable of detecting individual AEs.
Thus, they also proposed detecting individual AEs by adding

3



a
b

c

Distibution of the test statistic
when an image is normal

Distibution of the test statistic
when an image is an AE

Decision threshold

Figure 2: General relationship between the detection rate and
false positive rate. The detection rate is the sum of the areas b

and c, and the false positive rate is the sum of the areas a and b.
Reducing the decision threshold increases the detection rate, but

the false positive rate also increases.

an additional class to a DNN model, and train the model to rec-
ognize AEs as this new class. However, this requires changing
the application DNN. Metzen et al. [19] proposed attaching
a CNN-based detector at the middle layers of a DNN model.
The detector is trained in a supervised manner to classify an
input as normal or AE. This requires a large set of AEs to
be generated offline for each perturbation level. Attaching a
detector in the middle layers also causes the detector itself
to be a large, and hence vulnerable, DNN. MagNet [18] also
used a reference input to detect an AE. It uses an autoencoder
and compares the input image with the autoencoder output.
Since the autoencoder is supposed to reconstruct a given input
to the one that is smoothed over possible additive noise, the
output of the autoencoder plays a role as a reference. How-
ever, training an autoencoder is a challenging task, especially
when the inputs have a wide variety like in ImageNet. For
this reason, MagNet underperforms FS in ImageNet [32].

2.2.2 Feature Squeezing: State-of-the-art for detecting
adversarial examples

The recent work, Feature Squeezing (FS) [32] has proposed
to compare the original output to the output of a “squeezed”
input to detect AE. A squeezed input is one that has been
smoothed or simplified in some way such that it is less sensi-
tive to adversarial perturbations added by adversaries. Exam-
ple squeezing functions include quantizing the pixel values
to reduce color bit depth or spatially smoothing via blur fil-
ters. FS computes two predictions—one from the application
DNN model with the original input and the second from the
same application DNN but with the squeezed input. Given the
predicted probabilities from the original and squeezed input,
FS then performs a threshold test on the L1 distance between
the two probability vectors. If the L1 distance is larger than a
threshold, FS decides that the input image is an AE, otherwise
it is benign.

The intuition behind this design is that an adversarial mod-
ification will affect the original image but not the squeezed
input image. We leverage this same insight in our approach.
FS is reported to achieve a high DR for AEs, e.g., the perfect
DR for FPR = 0.05 for the MNIST dataset and DR = 0.64 for

the same FPR on the ImageNet dataset. However, its decision
threshold needs to be fixed targeting a particular perturba-
tion level. It performs poorly for perturbation levels that the
threshold is not targeted for. In order to maintain the high DR
for a wide range of perturbations, the value of the threshold
can be chosen small enough, but this inevitably incurs a high
FPR, as Figure 2 explains. The high DR and low FPR values
reported in the paper were obtained with large perturbation
levels (which were left implicit in the paper), which may be
detectable by a human-in-the-loop or simple threshold-based
detectors. Fundamentally, the drawback of FS is that there
is a rigid mapping of the perturbation level used to generate
the AE and the L1 norm threshold and we show that using
a richer detector can lead to more precise detection across a
wide range of perturbation levels.

3 Solution Approach

3.1 Solution Overview

The first insight of our approach is that we can improve the
DR of the AEDs by using more complex classifiers than a
simple thresholding scheme, in particular Gaussian Bayes
classifiers and simple neural network classifiers. The second
key insight is that we can create an ensemble of our detectors
via AND aggregation when the following two conditions are
met: (1) the errors of different detectors are approximately
independent, and (2) the DR is high for each detector. We
show empirical evidence behind these insights in § 4. When
the second condition is not met, then the ensemble can be
changed to be an OR aggregation as we describe in § 3.4.3.

As seen in Figure 1, we first compute a squeezed image
xq based on the original image x via quantization and pass
both through the application DNN to get logit vectors G(x)
and G(xq). We then take the difference of these logit vectors
Z(x) = G(x)−G(xq), where Z(x) is a logit vector of length K
(the number of classes the application DNN is classifying the
images into)—similar to the difference vector computed in FS
except that we use logit vectors instead of probability vectors
(justification for this choice in next section). Finally, we pre-
dict the probability of this difference vector via a simple clas-
sifier denoted by D : RK → [0,1], which takes Z(x) as input
and outputs an estimated probability that the original input is
adversarial. Importantly, we note that our detector D is a much
simpler classifier than the application DNN G : RM → RK ,
where M is the input dimensionality because the input dimen-
sion of the application DNN is usually much larger than the
number of output classes, i.e., M� K; for example, a clas-
sifier for the CIFAR-10 dataset has M = 32×32×3 = 3072
input dimensions (32×32 images, each with three channels),
but the number of classes K is only 10. We predict an image
is adversarial if the predicted probability is above 0.5, i.e.,
greater probability of being an adversarial example rather than
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a unperturbed example.1 Thus, by combining these steps, our
single HAWKEYE detectors have the form:

D(G(x)−G(xq))> T . (8)

We compare this to FS which is the following model:

‖σ(G(x))−σ(G(xq))‖1 > T , (9)

where σ is the softmax function. In both cases, the threshold
T could be adjusted to trade-off DR and FPR. Notice that
we use a more general probabilistic classifier D instead of
simply the L1 norm and we use logit vectors directly before
computing the softmax function. We see from Table 1 that
there is no clear winner in both metrics; however, the FPR of
using probability vectors tends to be higher. This is borne out
later in end-to-end experiments where the FPR of FS turns
out to be significantly higher than that of HAWKEYE (§ 4.2
and § 4.3). Thus, we decided to use logits for our HAWKEYE
detectors throughout our experiments.

Table 1: HAWKEYE performance using logit vectors versus
probability vectors

Our other innovation over FS is to reduce FPR significantly
by cascading an ensemble of detectors using AND aggrega-
tion, i.e., only flag a sample as adversarial if both detectors
predict adversarial, as illustrated in Figure 3. Ideally, for an
AND aggregation with an ensemble of size two, the detectors
will be correlated in terms of the samples each flags as adver-
sarial (i.e., both detectors will flag an adversarial sample as
such) but are uncorrelated with respect to errors they make
with benign samples (i.e., if one makes an error in flagging
a benign sample as adversarial, the other detector will not
make an error on the same sample). In practice, we found that
for our HAWKEYE detectors at different quantization levels
have relatively weak correlations for both types of errors (see
§ 3.4 for details and results). Given the relative independence
of detectors, we thus need individual detectors with a high
DR, a property directly enabled by our use of more powerful
classifiers. Thus, we are able to achieve significantly lower
FPR while keeping DR relatively high via our AND ensemble
of detectors, compared to a single detector (§ 4.2).

3.2 Design Details
Here we provide some important details of our overall de-
sign about how images are quantized and how HAWKEYE is
1While the threshold could be adjusted to trade-off DR and FPR, we found
that 0.5 was a reasonable default threshold in our experiments.
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(a) Adversarial example detectors are trained with different values of the
quantization step s.
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(b) An example of cascading two detectors of different values for the step
s.

Figure 3: Cascading detectors that use s1 and s2 as the
quantization step size. An AND aggregation is used on the

results of the two AEDs to identify an example as adversarial.

trained with different quantization levels for different detec-
tors in the ensemble. Reference Images via Quantization.

For a given image x, HAWKEYE creates a squeezed version
of the image by reducing the input space of the image. We do
this by creating a quantized image xq, which is made by quan-
tizing each pixel of x with step size s. Typically, a pixel of an
image is represented in 8 bits, ranging in value over [0,255].
Thus, as an example, quantizing with step size s = 128 means
that a pixel of xq is represented as either 0 or 128, which is
of 1-bit information. In general, after quantization with step
size s, a pixel value v is represented as sbv/sc, where b·c de-
notes a floor function. The motivation to use such a quantized
input is that as Figure 4 exemplifies, normal image and its
corresponding AE become more similar after quantization,
since the quantization process may nullify the noise added by
adversaries that is smaller than the quantization step size s.2

Thus, the quantized input xq can play a role as an invariant
reference of an image, regardless of the existence of malicious
additive noise.

Training HAWKEYE. In order to train an AED, we use the
same training images as were used for training the applica-
tion DNN. For each such data point (which is by definition
benign—call this as x), we create a set of AEs varying the
perturbation level, using the standard adversarial example

2We also tested other techniques for squeezing the input space of a sample as
introduced in the original Feature Squeezing paper, such as, the smoothed
input applying blur filters. However, its performance was far worse than
that with quantization. Thus we omit those results in our paper.
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Figure 4: An example of quantization on an input image from
ImageNet [3]. The second row is the quantized version of the
image in the first row. We can see that after quantization, a

normal image and its corresponding AE become more similar to
each other.

generation techniques described in § 2—call this the set of
x∗’s. Thus, we have a balanced dataset of clean input images
and generated AEs for training our detectors.

One possible drawback to HAWKEYE in comparison to
FS is that FS only requires small number of AEs to fit its
threshold T , whereas it may seem like our classifiers would
require many AEs—which can be computationally expensive
to generate especially for intensive iterative methods like CW.
In light of this, we develop two variants of HAWKEYE: a
simple Gaussian Bayes classifier (GB), which has minimal
sample requirements and a simple NN classifier, which is
relatively more powerful than GB and thus requires more
samples. We empirically investigate this training cost in our
experiments and see that while HAWKEYE-NN generally out-
performs HAWKEYE-GB, the latter is more robust when the
number of samples is small (§ 4.5). It is also worth noting that
our AED is a totally separate classifier from the application
DNN, i.e., we do not modify the application DNN itself in any
way. This is often a desired characteristic because it decou-
ples the application DNN training process—which is often
computationally expensive and time consuming—from the
AED training process. Additionally, in certain situations, it is
not possible to alter the application DNN either because it is
proprietary or has already been deployed. This detector-based
approach, however, is orthogonal to defenses that modify the
application DNN to make it more resilient to AEs (these are
more numerous than the current form of defense in this pa-
per) and thus can be used in conjunction with these types of
defense methods.

3.3 Two variants of HAWKEYE

3.3.1 HAWKEYE-GB: Interpretability via Simple Gaus-
sian Bayesian Detector

Because HAWKEYE is more complex than FS, one may ar-
gue that the intuition and interpretation behind FS (i.e., that
an adversarial image’s output will differ significantly from
its reference image’s output) is lost. However, by using a

(a) Mean of difference vector Z(x) for each digit for benign and
adversarial examples.

(b) Covariance of Z(x) for
benign examples.

(c) Covariance of Z(x) for
adversarial examples.

Figure 5: The Gaussian Bayes classifier parameters on the
MNIST [16] dataset show that the means are not always the

same and the variances of each dimension are definitely larger
for adversarial examples but the variances are not

uniform—suggesting that the classifier captures more interesting
variation than a simple thresholding classifier as in FS.

simple Gaussian Bayes classifier as the AED, we can still
interpret the detector. A Gaussian Bayes classifier merely esti-
mates the mean and covariance of the benign logits difference
Z(x) and adversarial logits difference Z(x∗). Classification is
performed by using Bayes rule which determines whether a
particular point is more likely to come from the benign Gaus-
sian distribution or the adversarial Gaussian one. Thus, we
can compare and interpret the mean vector and the covariance
matrix of the benign and the adversarial samples. In our exper-
iments, we found that the variance for adversarial examples
Z(x∗) is much larger than for clean examples Z(x) as demon-
strated in Figure 5 (look at the diagonal elements). Note from
Figure 5a that simply looking at the first moment (the mean)
of the difference vector Z(x) does not present a clear distinc-
tion between benign and adversarial samples. This explains
(in part) the weakness of FS—recall that FS computes the
L1 norm of the difference of probability vectors (similar to,
though not identical to Z(x)) and the lack of separation of
the mean of difference of Z(x) means that FS cannot find a
scalar threshold to accurately separate the two classes. This is
to be expected because adversarial examples are expected to
be farther from their reference image similar to the intuition
of FS. Thus, despite some added complexity, HAWKEYE can
have some interpretability especially if a simple interpretable
classifier like HAWKEYE-GB is used.

3.3.2 HAWKEYE-NN: Better Performance via Neural
Network Detector

To increase modeling power, we construct a simple neural
network (NN) classifier for our detector—note this is signifi-
cantly simpler than the application DNN. We create a simple
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4-layer NN using standard fully connected layers and ReLU
activations (the exact architectures for various datasets can
be seen in Table 5 of the experiments section). We train these
models by minimizing the standard cross entropy loss of the
difference in logits Z(x) often used for probabilistic classifi-
cation, i.e.,

min
D

n

∑
i=1
−yi logD(zi)− (1− yi) log(1−D(zi)) , (10)

where n is the number of training samples, zi = Z(xi), yi = 1 if
xi is adversarial, and yi = 0 if the example xi is benign. Thus,
this optimization function rewards the AED when it outputs
a 1 when xi is adversarial and 0 when it is benign. We use
a balanced training dataset of benign examples x and their
corresponding AEs x∗ as described previously.

3.4 Ensembles of HAWKEYE Detectors of Var-
ious Quantization Step Sizes

3.4.1 Dependency Between Detectors

In this section, we investigate the dependencies between de-
tectors at various quantization levels in more detail to provide
insight about when and why an ensemble of detectors could
be useful. In particular, we consider the case of taking an
AND-based ensemble of detectors (see Figure 3) rather than
the OR-based ensemble that is used in FS [32]. Recap that
an AND ensemble means that a sample is classified as ad-
versarial if all the detectors in the ensemble classify it as
adversarial. Thus, if the detectors make errors on distinct sam-
ples, i.e., their dependency is small, then creating an ensemble
is advantageous.

Naïvely, one might think that the simple correlation coeffi-
cient between the predictions of different detectors would be
a good measure for the dependencies between detectors. How-
ever, if both detectors have high accuracy, then the correlation
between detectors will be quite high (an extreme case is when
both are nearly perfect, then their correlation is nearly one).
Instead, we want to understand what dependency is there be-
tween the errors (i.e., misclassified samples) of each detector;
we investigate this dependency separately for false positive
(FP) errors and false negative (FN) errors. Thus, we define
the pairwise intersection over union (IoU) measures for FP
and FN separately (wlog for two detectors in the ensemble):

IoUFP =
|FP1∩FP2|
|FP1∪FP2|

, IoUFN =
|FN1∩FN2|
|FN1∪FN2|

,

where FN1 and FP1 denote the set of FN examples and FP
examples for detector 1 (and similarly for detector 2), ∩ is
the intersection operator, ∪ is the union operator, and |A|
denotes the size of the set A. IoU is 1 if the sets are the
same (i.e., the detectors fail on the same examples) and 0
if the sets are entirely different (i.e., the detectors fail on
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Figure 6: The pairwise IoU for FN (left) and FP (right) between
detectors with different quantization levels shows that detectors

with different quantization levels are relatively independent.

completely different examples). As we see in Figure 6, two
detectors with different quantization levels have a low IoU for
both FN and FP, especially when they have widely different
quantization levels. Therefore, our detectors seem to make
errors relatively independently of each other. This observation
is critical for our proposal of using an AND ensemble of
HAWKEYE detectors we describe in the next section.

3.4.2 AND Ensemble

We now explore AND ensembles of detectors (Figure 3) in
contrast to OR-based ensembles of FS [32]. In our experi-
ments, each detector is separately trained using its own quan-
tization step size, on the same x’s and correspondingly gener-
ated x∗’s. Given this AND ensemble, what is the relationship
between FPR and DR? While this question cannot be an-
swered analytically, we consider the case where the detectors
are independent—which we give empirical evidence for in
the previous section. If the AEDs are completely independent,
we have the following relationships:

DR = (DR of detector 1)× (DR of detector 2),
FPR = (FPR of detector 1)× (FPR of detector 2).

That is, when we cascade detectors via AND semantics, the
total FPR is the product of FPRs of all detectors, and thus it
goes down. However, the total DR is also the product of DRs
of all detectors. Thus, unless each detector achieves DR = 1,
the total DR also decreases. For this reason, we only cascade
detectors that have a high DR.

3.4.3 OR Ensemble

While HAWKEYE predominantly uses AND ensemble of de-
tectors, there is one situation where it uses an OR ensemble.
This is when through the training process, it becomes obvi-
ous that it is not possible to have any individual detector (i.e.,
with a specific quantization step) to have a high DR. This
decision is specific to the dataset and to the attack against
which HAWKEYE is expected to be deployed3. What is "high"

3As we will show in the detailed evaluation (§ 4.4), the detectors of HAWK-
EYE are generally transferable across attack types, i.e., if they are trained
on one attack type, they perform creditably even against other attack types.
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is subjective, but empirically we find that if the DR is be-
low 0.75, it is advantageous to use the OR detector. The OR
ensemble is made possible by the fact that the FPR of even
low-performing detectors is not found to be high, reflecting
the intuition of very different variances of benign and adver-
sarial examples (Figure 5). In our experiments, we find that
under certain cases of white-box attacks with the most power-
ful attack generator (CW), we have to use an OR ensemble of
detectors (§ 4.6).

3.5 Parameter selection
Parameters of HAWKEYE are the decision threshold, the quan-
tization level, and the number of detectors to cascade. We
choose the decision threshold T = 0.5 for simplicity since
this is a simple natural default for probabilistic classification
though other thresholds could be explored to trade-off DR
and FPR for each detector. We experiment with various levels
of quantization in § 4. In general, a practitioner would likely
train detectors at multiple quantization levels and choose the
best performing detectors (though this is not the primary fo-
cus of this paper). To deal with white-box attacks, we propose
randomizing the parameter settings of HAWKEYE. A logi-
cal choice for randomization is the quantization level. We
show that this indeed makes HAWKEYE resilient to white-
box attacks (§ 4.6). However, just by itself the number of
quantization levels is not large (8 levels since pixel values are
in [0,255] and we use 2k as a quantization step) and there-
fore does not provide enough entropy in isolation. However,
coupled with the other parameter settings, there is enough en-
tropy to make HAWKEYE resilient to white-box attacks. The
number of detectors to cascade depends on the dataset but we
usually find that cascading only two detectors is enough to
lower the FPR significantly without lowering DR too much.
More than two detectors in an AND ensemble would likely
hurt DR a good deal as evidenced by our analysis in the pre-
vious section in which DRs multiply.

3.6 HAWKEYE Detector White-Box Attack
In this section, we develop a new detector white-box attack,
i.e., the adversary knows the parameters of the detector as
well. We create a white-box attack separately for Feature
Squeezing and our HAWKEYE-NN detectors to test the limits
of their defense. Note that we already assume that the ad-
versary has white-box access to the application DNN; this
scenario assumes an even stronger attacker. We develop a
detector white-box attack by adding a term to the standard
CW L2 attack:

min
δ

‖δ‖2
2 + c · f (x+δ)+ c2 ·g(x+δ), (11)

s.t. x+δ ∈ [0,1]d , (12)

where f is defined as:

f (x′) = max(max{G(x′)i : i 6= t}−G(x′)t ,−κ) (13)

where c2 · g(x+ δ) is the new term to encourage the AE to
circumvent the detector. As in the original CW L2 attack
x′ = x+δ, t is the true class label, and f (x′) is the function
that promotes a change of labels.
For attacking FeatureSqueezing, g is defined as:

g(x′) = ‖G(x′)−G(Q(x′))‖ , (14)

For attacking HAWKEYE-NN, g is defined as:

g(x′) = L(H(G(x′)−G(Q(x′))),0) , (15)

where, L(·, ·) is the cross entropy loss, identical to
HAWKEYE-NN’s loss function, H computes the HAWKEYE
detector probability being an AE, and Q is the quantization
function. The basic idea is for the AE to try to fool both the
application DNN via f and the detectors via g.4 Because
the quantization function Q is not differentiable, FS did not
attempt a white-box attack for quantization squeezers. We
propose to get around this by using a soft (i.e., differentiable)
quantization function Qsoft defined in [5]:

Qsoft(x) = ∆

(
i+

tanh−1(0.5k∆) tanh(k(x− i−0.5))+1
2

)
where ∆ = 255/s is the interval length, s is the quantization
step, and k is the parameter controlling the sharpness of Qsoft
(i.e., the tightness of approximation), and i = b x

∆
−1c denotes

the quantization block corresponding to x. If k is large, then
Qsoft behaves like Q but the differentiable parts are steeper
(i.e., harder to optimize). On the other extreme, if k is small,
then Qsoft behaves like a linear function and thus is easy to
optimize but does not approximate Q well. Thus, a middle
value of k is likely a good choice for these detector white-box
attacks.

3.7 Implementation
All codes were implemented using Python 3.6.10 with CUDA
10.2.89. Pytorch 1.4.0, Numpy 1.18.1, Matplotlib 3.1.3, scikit-
learn 0.22.1 libraries were used to construct neural network
architecture, optimizations, and defense mechanisms. The
Torchvision Python library offers pretrained models also
with some data structures and useful tools. We use the
torchattack library [11] for generating all three attack types
(FGSM, PGD, and CW). All experiments in the paper were
run on a Tesla P100 PCIe 16GB GPU. The implementation
has about 1200 lines of code with four parts: Training or load-
ing the application DNN, generating adversarial examples,
4For implementation, we use the same trick as in the original CW attack to
satisfy the box constraint on δ: instead of optimizing over δ directly, we
define δ in terms of w as: δ = 0.5(tanh(w)+1)− x and optimize over w.
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training or loading HAWKEYE, and evaluating the attacks or
defense methods. For comparison, we re-implement Feature
Squeezing in the Pytorch library (the original paper was on
a TensorFlow implementation). Dynamic search of the tun-
ing parameter of Carlini-Wagner attack is not implemented
which is computationally expensive so we fix the CW attack
parameter to various different values to show a range of CW
attacks.

4 Evaluation

4.1 Experiment Setup

Evaluation Metrics. We define attack success rate (ASR) to
be the proportion of times that an attack method succeeds in
fooling the application DNN (without any defense mechanism
in place). For our detection methods, the detection rate (DR)
is equivalent to the true positive rate (TPR) of the detector,
which we use interchangeably in our results. The detectors’
false positive rate (FPR) is based on the standard definition.

Datasets and Application Models. We use three common
datasets to evaluate our defense method: FashionMNIST [31],
CIFAR-10 [12] and ImageNet-ILSVRC2012 [26]. We lever-
age standard models for each of the datasets, where we use
MobileNet_v2 [27] similar to the MobileNet model in [32]
for ImageNet, and a ResNet [9] model for FashionMNIST
and CIFAR-10. We summarize the application DNN informa-
tion in Table 2. For FashionMNIST and CIFAR-10, we use
a 14-layer ResNet which has 3 blocks. Each block has two
3×3 convolutional layers. We keep the rest of the model the
same as the original ResNet model. We use the Adam opti-
mizer in PyTorch to minimize cross entropy loss for 80 epochs
with a learning rate of 10−3. For ImageNet, we use the pre-
trained MobileNet_v2 model from the torchvision.models
Python package.

Table 2: Summary of Application DNN Models
DataSet Model # parameters Top1 Acc
FashionMNIST ResNet 195450 94.40%
CIFAR-10 ResNet 195738 87.44%
ImageNet MobileNet_v2 3504872 70.76%

Attack Methods. We use three different kind of attack meth-
ods to evaluate HAWKEYE, namely FGSM, PGD, and CW2
described in § 2. We explore various parameter settings for
each attack type to get a broad view of the attacks and defense
evaluation. For FGSM attack, we set our parameter ε from
1/255 to 16/255 because perturbations larger than 16/255
could be easily perceived by a human. For PGD attack, ε

represents the strength of the attack or maximum perturba-
tion, α is the step size according to [15], and iter means the
number of steps. We do not use a random start because while
this slightly improves the ASR, it seemed to have minimal

affect on evaluating defense methods in preliminary exper-
iments. The limits of our PGD parameters were chosen to
show where PGD performs poorly (i.e., ASR near 60%) up
to a perturbation where it performs well (i.e., ASR of 100%).
For the Carlini-Wagner (CW) attack, the c parameter controls
both the success rate and the perturbation amount—a higher c
will have a higher success rate but also a higher perturbation
amount. We fix the c parameter to four different values (0.4, 2,
10, 50) for simplicity instead of doing a binary search for c for
every example, which is computationally expensive. We chose
these parameter values to explore the space of possible attack
strengths for CW. We set the number of iterations to 5,000
to ensure that the CW attack converges to real adversarial ex-
amples. (We found that the default in torchattack of 1,000
iterations did not always converge.) We note that the CW
attack is far more computationally expensive (nearly 1000×
more expensive) than the other attack types as can be seen in
Table 3 (even when fixing c to a single value). We summarize
the attack strengths for each dataset in Table 4 which show the
attack success rates (ASR) and average attack perturbations
in terms of both L2 and L∞ norm for each dataset. From these
tables, it can be seen that we explore a wide variety of ASRs
and perturbation levels in our experiments.

Table 3: Average time to generate 1,000 adversarial examples

Feature Squeezing Detector. The original FS paper com-
puted the L1 norm of the difference in probability vectors. To
make FS more comparable to HAWKEYE which operates on
the logit vectors, we compute the L1 norm of the difference
in logit vectors—which can be seen as a simple variant of
the original FS. Further, from Table 1, we see that there is no
clear winner between using the logit vector or the probability
vector (i.e., neither wins simultaneously on both TPR and FPR
metrics). In our experimental setting, in order to provide a
intuitive way to compare FS, we choose a threshold to match
the FPR of HAWKEYE-NN with the same trained application
DNN and same test examples. Note that we only use the train
examples to set the threshold (i.e., based on train FPR) so the
test FPR in the result tables may differ significantly from the
target FPR.

HAWKEYE Detectors. For HAWKEYE-NN, we construct sim-
ple four layer fully connected neural networks with ReLU
activations as detailed in Table 5. We emphasize that these
are far simpler networks than the application DNNs. We
use the Adam optimizer with cross entropy loss for 20
epochs and a step size of 2×10−4. For HAWKEYE-GB, we
use the QuadraticDiscriminantAnalysis estimator from
sklearn.discriminant_analysis, which fits a Gaussian
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Table 4: Attack Strength of FGSM, PGD,and CW in FashionMNIST, CIFAR-10, and ImageNet Datasets

density to each class and then applies Bayes’ rule to predict
the classification probability. For most experiments, we train
our detectors using 10,000 natural examples and 10,000 ad-
versarial examples generated from these natural examples;
however, in § 4.5, HAWKEYE, and especially HAWKEYE-GB,
can perform well with a much smaller number of training
examples.

Table 5: HAWKEYE-NN Structure

Layer Type Act.
Output shape
(FashionMNIST)

Output shape
(CIFAR-10)

Output shape
(ImageNet)

Input 10 10 1000
1 FC ReLU 10 1000 1000
2 FC ReLU 10 100 100
3 FC ReLU 10 10 10
4 FC 2 2 2

4.2 Single HAWKEYE Detector

We first want to explore the performance of a single HAWK-
EYE detector in terms of both DR and FPR. For this experi-
ment, we choose one representative attack for each attack type
and one representative quantization level for each dataset. The
representative attacks have the following parameters: FGSM
(ε = 4/255), PGD (ε = 2/255, α = 1/255, iter= 10), and CW
(c= 2), and the representative quantization levels of 16, 2, and
32 were used for FashionMNIST, CIFAR-10, and ImageNet
respectively based on the quantization level that had the best
accuracy across all detectors for all attacks and parameters.
The results can be seen in Table 6. We first notice that for
a majority of the cases, HAWKEYE-NN has a very high DR
often close to 95%—which will be important for cascading
detectors via an AND ensemble in future sections. Second,
for almost all situations, the HAWKEYE detectors perform
better or comparably to FS, which either has a lower DR or a
signficantly higher FPR. In particular, on ImageNet, FS per-

forms very poorly for all attack types. We can also see that
HAWKEYE-GB can perform reasonably well and sometimes
comparable to HAWKEYE-NN except in the most difficult
situations. Thus, if fast computation or interpretability are
important, HAWKEYE-GB could be used. Additionally, we
note that there are multiple cases where the FPR is at unac-
ceptably high rates such as for the CW attacks on CIFAR-10
and ImageNet.

Table 6: Single detector DR and FPR performance of HAWKEYE
(shortened as "HK") and FS, with representative FGSM

(ε = 4/255), PGD (ε = 2/255, α = 1/255, iter= 10), and CW
(c = 2) attacks and representative quantization levels of 8, 2, and

32 for FashionMNIST, CIFAR-10 and ImageNet respectively.
Complete results across attack types and quantization levels are

in [1].

4.3 AND Ensemble of HAWKEYE Detectors

We now examine the empirical effect of cascading HAWKEYE
detectors via an AND aggregation as seen in Table 7 and
compare to FS (that uses an OR aggregation). We chose the
quantization levels for the ensemble based on the best average
accuracy of the HAWKEYE-NN detectors across all attacks.
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For FashionMNIST, the FPR for AND-HAWKEYE-NN goes
down to less than 0.5% compared to the single detector case
which had FPRs up to 3.5%. For CIFAR-10 and ImageNet,
the FPR also shows a significant decrease compared to single
detector (e.g., for the CIFAR-10 FGSM attack, the FPR goes
down from about 11% to 7%, or for AND-HAWKEYE-GB on
ImageNet FGSM attack, the FPR goes down from 34.6% to
28.3%). These lower FPRs are in stark contrast to FS with an
OR ensemble which greatly increases the FPR (e.g., FS on
CIFAR-10 across attacks is more than 49%). The drawback
to the AND-HAWKEYE ensemble is that the DR also goes
down a little. However, many of the results still have high
detection rates (often higher than 85%) because the original
detectors had very high detection rates. Thus, if the original
detection rates are high (as is generally true for our HAWKEYE
detectors), an AND-ensemble can significantly lower FPR
while maintaining a relatively high DR.

Table 7: Ensemble detector results for AND-HAWKEYE-GB,
AND-HAWKEYE-NN and OR-FS with FGSM (ε = 4/255), PGD
(ε = 2/255, α = 1/255, iter= 10), and CW (c = 2) for ensembles
of detectors at different quantization levels, namely 8 and 16 for

FashionMNIST, 2 and 4 for CIFAR-10, and 32 and 64 for
ImageNet. HAWKEYE-NN outperforms the others, though the

CW attack on the more complex datasets CIFAR-10 and
ImageNet turns out to be challenging for all.

4.4 Generalizability Across Different Attacks
One possible concern is that HAWKEYE will overfit to the
AEs used during training and will not generalize to other
attack methods—i.e., it will only work for the attack type
that it was trained on. We explore this concern by training
our AND-HAWKEYE-NN (s = 8 and s = 16) on the simple
and fast FGSM method, but testing the detector on the PGD
and CW attacks for the FashionMNIST dataset as seen in
Table 8. While there is some performance degradation in ei-
ther DR or FPR, AND-HAWKEYE-NN continues to perform
well in most cases (in particular for ε = 2/255 the perfor-
mance degradation is minimal). In one odd corner case with
ε = 8/255, one of the two detectors in the AND ensemble
performs quite poorly on the new attack, and thus the AND
of the two detectors has close to 0% DR. This seems to be
an exception possibly caused by a bad local minimum of

HAWKEYE-NN training—thus, one possible approach would
be to use HAWKEYE-GB, which has a well-understood so-
lution to avoid this odd case. However, overall, the results
support the idea that HAWKEYE does not overfit to the training
attack method and can in many cases generalize to new attack
methods. As one final observation, we note that small per-
turbations (e.g., ε = 1/255) of FGSM attacks rarely succeed
in attacking the application DNN (i.e., the ASR is relatively
low). However, HAWKEYE trained with smaller perturbation
has the best performance among different kinds of attacks,
even at large perturbations. This suggests that training on
smaller perturbations of FGSM will create a detector that is
generalizable over a wide set.

4.5 HAWKEYE Training Cost
Another possible concern with HAWKEYE is that because
HAWKEYE is more complex, it will require many more AEs
to train than FS—particularly the high-cost AEs based on the
CW attacks can take a long time to generate. First, we note
that our result in the previous section on the generalizability
of HAWKEYE to other attack methods suggest that it is possi-
ble to train using cheap AEs such as FGSM-AEs while still
being able to defend against more complex attacks like CW.
Second, we explore the number of training examples needed
to perform well in this experiment as seen in Figure 7, which
shows the TPR (i.e., DR) and FPR of HAWKEYE (s = 8 and
s = 16). For AND-HAWKEYE-NN, even with a small number
of AEs (500), we can quickly get a high detection rate above
95%. An additional 500 AEs can drive the FPR below 0.05 for
AND-HAWKEYE-NN. We highlight that AND-HAWKEYE-
GB performs very well even with only 100 or 200 samples.
This highlights the simplicity of AND-HAWKEYE-GB and
the consequent ease of training, while achieving reasonable
accuracy. Thus, if low computational cost of training is a
key consideration, we can use HAWKEYE-GB detectors. We
also note that there are well-known estimators for multivari-
ate Gaussian distributions even with a very small number of
samples (e.g., Graphical Lasso [4]), which could even further
reduce the number of required samples in some cases.

4.6 Detector White-Box Attacks
Finally, we explore the question, what if the adversary not
only knew the parameters of the application DNN but they
also knew the parameters of our AED (i.e., the HAWKEYE
detector is a white-box to the adversary)? Does HAWKEYE
fail in this case or does it still provide an effective deterrent?
We will use our HAWKEYE white-box attack defined in § 3.6
with k = 100 for the soft quantization function Qsoft.

Detector White-Box Attack Strength. In Table 9 we show
the detector white-box attack strength in the case when the ad-
versary has full knowledge of the parameters and quantization
level used for the detector (almost like oracle knowledge of
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Table 8: Generalizability Results: AND-HAWKEYE-NN (s=8 and s=16) performance on FashionMNIST when training on FGSM but
evaluating on PGD and CW attacks. The last row is for comparison when training and testing on the same attack.
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Figure 7: Performance of AND-HAWKEYE-GB and
AND-HAWKEYE-NN detectors (s = 8 and s = 16) on

FashionMNIST with different numbers of AEs in their training
sets and with an equal number of benign examples in each case.
The attack method is FGSM with ε = 16/255. HAWKEYE-GB is

resilient to a small number of training samples.

HAWKEYE-NN). The white-box attack has 61.86% success
rate before detection, which is lower than 74.58% black-box
attack. This indicates that in crafting the white-box attack,
since it has an objective of fooling the detector, it becomes a
little less effective against the application DNN itself. Addi-
tionally, the white-box attack takes more than twice as long
to generate and introduces higher perturbation to make the
benign examples to become adversarial. A higher perturba-
tion runs the risk of being detected by a simple detector or
by the human eye. However, the white-box attack becomes
much harder to detect by HAWKEYE (which is only trained
on black-box attacks). As an extreme case, for the HAWKEYE-
NN detector with a single detector s = 2, the detection rate
decrease from 84% to 0%. We attempt to alleviate this weak-
ness by considering randomization of the quantization level
in the next experiment.

Table 9: Carlini-Wagner L2 Black Box vs White Box Attack
against Fashion-MNIST, optimized to attack HAWKEYE-NN

Performance HAWKEYE with Different Quantization
Steps. In this scenario, we consider what might happen if
we randomize the quantization step (i.e., the attacker does

not know the quantization step of our detector). Figure 8
shows the performance of HAWKEYE defending against white-
box attack while using different quantization steps where the
white-box attack assumes a quantization step of size 2. Be-
cause white-box attacks only enhance the AEs but do not
change the benign examples in testing, the white-box attack
will affect HAWKEYE’s DR but the FPR (which only depends
on benign examples) relatively unaffected. The white-box
attack are most effective when the attack and defense using
the same quantization step parameter (i.e., when the white-
box attack quantization matches HAWKEYE’s quantization
step). However, when the quantization step of the white-box
attack does not match the quantization step of the HAWKEYE
detector (e.g., quantization step greater than 2 in our results),
then the DR is quite high and near what it would be against a
black box attack. Thus, we can weaken the attack significantly
by randomizing the quantization step size for each attack.
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Figure 8: Performance of HAWKEYE single detectors with
different quantization steps against white-box attack with

quantization step=2 on FashionMNIST. Quantization levels
farther off from what the adversary is trained on are more

effective.

AND and OR Ensembles for Defending Against White-
Box Attacks. In this experiment, we explore both AND
and OR ensembles for defending against detector white-box
attacks. As in the previous experiment, we want to con-
sider if we can reduce the white-box effectiveness by using
randomization—in this case, we could randomize the quan-
tization levels of the different detectors in the ensemble. In
Figure 9, we show that the DR and FPR of HAWKEYE for

12



detector white-box attacks using different quantization lev-
els and different aggregation approaches, i.e., OR and AND
aggregation, where the white-box attack is trained with an
ensemble with quantization levels 2 and 4. First, for a single
detector, we can see that the DR is very low for the attacked
quantization levels (2 and 4) but the DR is fairly high for
the other levels (8 and 16). Now we also notice that OR en-
sembles are more resilient to white-box attacks (see 4 OR 8
compared to 4 AND 8 ensembles) because the attacker only
has to attack one of the two detectors in an AND ensemble
to bypass the defense. Thus, if it is reasonable to assume that
an adversary will know about the detectors, an OR ensemble
(with randomization) may be more appropriate.

Figure 9: The performance of HAWKEYE-NN on
FashionMNIST for white-box CW attack against quantization

levels s = 2 and s = 4 simultaneously with parameters c = 2 and
c2 = c3 = 10. This demonstrates that OR ensembles may be

better for handling white-box attacks and that randomization of
the constituent detectors might alleviate the attack strength of

white-box attacks.

5 Discussion

Other Methods for Creating Adversarial Examples.
Jacobian-based saliency-map approach (JSMA) by [25] aims
at fooling a classification model into outputting a specific
target class t by iteratively perturbing one or two pixels at
a time. Since only one or two pixels change at a time, this
method takes a long time to create an AE (unusably long
for ImageNet) compared to FGSM or I-FGSM [32, 33], and
the resulting AEs usually contain pixels with high intensity,
which can be relatively easily detected by humans. JSMA also
requires a huge amount of memory to compute a Jacobian
matrix [32]. Thus, we did not consider it in our evaluation.
Deepfool [20] is another untargeted attack method, creating
AEs with the assumption that a classifier is a linear model.
Since DNNs are not actually linear, Deepfool iterates a pro-
cess, where a DNN is first approximated to a linear model
and the minimum level of perturbation is decided for each
approximation. Although Deepfool can successfully mislead
DNNs, AEs created by it often look too distorted from their

original images, thus easily detectable by humans, as reported
in [32]. Thus, we exclude it from our evaluation as well.
Defenses by Hiding Gradients. The basis of the first gen-
eration defense mechanisms against adversarial examples is
what is often called “gradient masking", which attempts to
hide a useful gradient (like ∂J(x,y)

∂x or ∂[F(x)]t
∂x ) in the vicinity

of the input data points. Adversarial training by [6] enhances
robustness by exposing a model to AEs in advance during
the training phase. Distillation is a recent advance in deep
learning [10], which found that knowledge in an NN can be
transferred to a smaller model. It was shown in [23] that a
distilled model can be more robust to adversarial examples
than its original model. However, [24] reported later that the
distilled model is weak against black-box attacks.
Random Ensembles or Bias Term for White-Box Attacks.
In our experiments, we show that AND ensembles can be
used for driving down the FPR if DR is high whereas OR
ensembles are better at handling white-box attacks or cases
where DR is low. More generally, it would be possible to
consider more general ensembles that include both OR and
AND aggregation to combine the benefits of both types of
aggregation. Additionally, we could add more randomness
for defending against white-box attacks by randomizing the
size and configuration of the ensemble to handle each new
example. Finally, we could also add a random bias term to
the image input so that the quantization is slightly different
every time, i.e., Q(x+b) where b has a maximum absolute
value of the quantization step size. Both of these additional
randomization tactics would make it more challenging for an
adversary to circumvent our defenses.

6 Conclusion

In this paper, we have tackled the problem of detecting ad-
versarial examples and our focus has been on adversarially
generated images. This line of work is orthogonal to work
that tries to make the application model resilient; here once
an adversarial example is detected, it can be discarded and
the application model does not even need to deal with such an
example. We bring forth three innovations to this problem—
using logit vectors as the output of the application DNN that
is to be protected, passing the logit vector through a classifier
(a simple fully-connected NN or a Gaussian Bayes classifier),
and creating an ensemble of detectors (using the logical AND
or OR ensemble). Taken together, we find that HAWKEYE
outperforms Feature Squeezing; the latter tends to have much
higher FPR and is weak against powerful attacks against com-
plex datasets. We shed light on why an AND ensemble works,
when an OR ensemble is desired, and insights on defending
against a white-box attack through randomization.
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HAWKEYE: Adversarial Example Detection through Ensemble Detectors 
Supplementary Material

A Results of FeatureSqueezing and HAWK-
EYE using single detector against Gray-Box
attack

Tables 1, 2, 3 show the main results of Hawkeye and Fea-
tureSqueezing under FGSM, PGD, and CW attacks with
different parameters. In the tables, QS means quantization
step;ε0 represents the minimum possible distance which equal
to 1/255. ε in FGSM represents the perturbation level which
also represents the L∞ distance between adversarial examples
and their benign prototype; ε in PGD represents the radius of
the Lin f ty projection ball, and α represents the step size. it
means the total iteration times. c in CW represents the tuning
parameter of the term which tries to flip the classification re-
sults. FS-ACC mains the defense based on FeatureSqueezing
which means to maximize the accuracy. FS-FPR tries to fix
the false positive rate(FPR) to be equal to HE-NN’s results
using the training set. HE-GB is the results based on Hawkeye
Gaussian Bayes classifiers, and HE-NN is the results based

on Hawkeye neural network classifiers.

B Results of FeatureSqueezing using single de-
tector against White-Box attack

Table 4 represents the results of FeatureSqueezing using sin-
gle detector against White-Box attack, where c2 is the tuning
parameter of the term which tries to minimize the L1 norm of
logit vector between x and xq, s is the quantization step, s = 2
means it attacks the s = 2 and s = 2,4 means it attacks both
s = 2 and s = 4. The results show the similar phenomenon
with HAWKEYE white-box attacks. The adversarial examples
effectively attack the detector with given s but shows little
impact on detector with s which is not equal to the attack
parameter. However, due to lower detector rate, the overall
performance of Feature Squeezing is lower, which narrows
the possible choices of random ensemble.
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Table 1: FeatureSqueezing and Hawkeye performance on FashionMNIST data with different attacks

Def QS
FGSM PGD CW

ε = 1ε0 ε = 4ε0 ε = 8ε0 ε = 16ε0 ε = 2ε0 α = 1 it = 1 ε = 2ε0 α = 1 it = 5 ε = 2ε0 α = 1 it = 10 ε = 4ε0 α = 2 it = 10 ε = 8ε0 α = 4 it = 10 c=0.4 c=2 c=10 c=50
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

FS-
ACC

2 99.9% 0.3% 78.1% 27.7% 67.6% 43.5% 99.2% 3.3% 99.8% 0.2% 100.0% 0.0% 100.0% 0.0% 100.0% 0.2% 72.3% 24.2% 99.8% 0.4% 99.8% 0.1% 100.0% 0.4% 99.8% 1.3%
4 99.7% 2.7% 67.8% 53.2% 81.7% 78.9% 98.9% 5.1% 98.6% 3.2% 99.9% 0.4% 99.8% 0.1% 99.4% 4.7% 71.5% 62.4% 97.4% 1.3% 98.8% 0.3% 98.6% 0.3% 98.2% 1.3%
8 97.4% 11.9% 99.7% 2.6% 96.1% 94.9% 99.4% 4.0% 91.8% 13.6% 97.9% 2.1% 99.3% 2.3% 99.8% 0.8% 98.8% 8.7% 92.2% 2.2% 97.2% 1.3% 95.7% 0.7% 95.5% 1.8%
16 88.9% 28.9% 98.2% 7.7% 99.9% 3.6% 100.0% 2.1% 85.2% 34.2% 94.7% 8.1% 94.4% 8.0% 99.7% 1.8% 100.0% 1.3% 89.0% 5.5% 94.5% 2.7% 93.7% 2.1% 94.4% 1.5%
32 76.4% 46.1% 95.6% 16.4% 99.1% 7.7% 99.3% 5.9% 69.9% 43.7% 81.8% 18.4% 90.0% 18.9% 99.1% 5.0% 99.6% 2.6% 85.1% 12.2% 89.1% 7.2% 89.1% 16.3% 92.2% 4.8%
64 70.1% 57.5% 91.0% 37.4% 95.2% 23.3% 95.5% 19.9% 72.4% 62.1% 73.9% 37.5% 75.3% 32.0% 95.8% 16.4% 98.1% 9.5% 77.7% 24.3% 84.1% 22.6% 84.9% 15.6% 87.7% 62.1%
128 67.0% 65.8% 85.1% 66.0% 87.0% 53.9% 88.0% 50.7% 80.1% 78.8% 71.3% 59.7% 74.0% 61.4% 88.3% 40.1% 99.7% 30.5% 82.0% 60.9% 75.2% 48.2% 84.9% 16.3% 78.6% 45.4%

FS-
FPR

2 99.9% 0.1% 66.0% 17.8% 38.7% 24.4% 87.4% 0.4% 99.6% 0.1% 100.0% 0.1% 100.0% 0.0% 100.0% 0.0% 53.0% 15.0% 99.0% 0.0% 99.7% 0.1% 100.0% 0.3% 99.8% 1.0%
4 96.7% 1.3% 44.3% 31.0% 46.7% 54.7% 87.1% 0.6% 89.8% 1.1% 99.6% 0.1% 98.7% 0.0% 96.9% 1.0% 31.2% 30.0% 94.3% 0.2% 98.3% 0.2% 97.9% 0.1% 95.8% 0.2%
8 76.3% 3.6% 98.5% 1.2% 46.1% 61.3% 96.1% 2.4% 71.0% 5.9% 94.6% 1.4% 94.6% 0.5% 99.1% 0.1% 93.2% 2.8% 92.9% 2.9% 94.9% 0.4% 94.7% 0.2% 95.1% 0.7%
16 65.9% 15.0% 91.1% 2.6% 98.4% 1.1% 99.0% 0.6% 63.9% 19.7% 80.4% 3.0% 81.9% 2.6% 92.2% -3.9% 98.8% 0.6% 85.2% 2.6% 88.5% 0.8% 89.3% 0.7% 93.2% 0.5%
32 55.0% 26.9% 80.5% 6.1% 84.8% 2.8% 77.7% 0.7% 45.3% 26.4% 68.3% 10.8% 73.0% 10.2% 92.2% 2.1% 79.6% 0.1% 76.4% 5.2% 81.6% 3.9% 81.3% 1.7% 86.3% 2.0%
64 41.3% 32.2% 54.5% 14.1% 47.2% 4.8% 47.9% 3.4% 32.4% 26.1% 38.9% 15.5% 47.0% 14.9% 85.3% 9.1% 71.4% 1.5% 50.7% 11.0% 57.8% 7.3% 51.9% 5.1% 55.8% 5.3%
128 12.2% 12.3% 32.8% 23.5% 22.6% 11.3% 17.8% 7.6% 41.0% 38.8% 37.9% 30.4% 41.1% 31.0% 44.4% 13.1% 58.5% 4.1% 32.7% 25.2% 24.3% 15.7% 17.1% 6.6% 26.5% 12.8%

HE-
GB

2 100.0% 2.0% 62.0% 14.7% 45.5% 18.3% 99.9% 3.4% 100.0% 2.2% 100.0% 0.9% 100.0% 1.2% 100.0% 1.9% 61.6% 12.1% 100.0% 0.9% 99.9% 0.5% 100.0% 1.4% 100.0% 2.5%
4 100.0% 4.4% 47.8% 27.9% 83.4% 68.7% 99.6% 4.3% 99.9% 3.9% 100.0% 3.1% 98.2% 0.0% 99.8% 3.6% 73.0% 53.7% 98.5% 1.5% 99.6% 0.9% 99.8% 1.2% 99.7% 2.2%
8 98.8% 7.0% 99.9% 4.6% 85.5% 62.3% 99.9% 4.7% 93.2% 8.4% 100.0% 4.6% 99.8% 3.9% 100.0% 1.8% 99.4% 5.4% 93.5% 2.5% 98.0% 1.7% 97.5% 1.8% 97.0% 2.5%
16 78.1% 13.9% 99.6% 6.8% 100.0% 3.6% 100.0% 2.8% 66.9% 15.3% 95.6% 6.8% 96.1% 6.4% 100.0% 2.9% 100.0% 2.7% 88.4% 4.1% 95.8% 3.3% 94.7% 2.6% 95.4% 3.5%
32 52.1% 16.9% 96.3% 9.0% 99.8% 6.1% 99.8% 4.1% 45.6% 19.0% 79.5% 11.5% 81.6% 10.1% 99.8% 5.0% 100.0% 3.1% 84.2% 7.1% 90.7% 6.3% 91.0% 3.7% 93.7% 4.9%
64 47.5% 31.8% 89.7% 16.2% 96.5% 8.7% 98.1% 7.2% 44.9% 28.2% 57.5% 18.0% 62.4% 15.8% 96.7% 9.5% 99.9% 5.0% 73.7% 12.4% 84.4% 10.2% 84.6% 8.0% 88.3% 9.2%
128 60.8% 47.6% 77.2% 21.9% 89.5% 13.8% 91.2% 11.6% 59.3% 49.6% 48.5% 27.9% 50.4% 25.3% 86.8% 15.7% 43.7% 0.0% 71.6% 26.7% 76.3% 19.6% 75.0% 16.5% 75.3% 16.0%

HE-
NN

2 99.9% 0.3% 66.3% 19.7% 55.4% 27.3% 98.1% 0.9% 99.7% 0.0% 99.9% 0.0% 99.8% 0.0% 99.3% 0.1% 71.7% 17.0% 99.8% 0.1% 99.9% 0.1% 99.9% 0.3% 99.5% 0.7%
4 99.3% 1.4% 52.5% 33.3% 73.8% 58.6% 98.2% 1.7% 97.5% 1.3% 99.8% 0.4% 99.7% 0.0% 98.8% 2.2% 56.6% 30.9% 98.8% 0.6% 99.5% 0.5% 99.1% 0.4% 99.0% 0.4%
8 95.6% 5.1% 99.5% 1.4% 80.1% 53.7% 99.0% 2.4% 90.6% 6.7% 98.3% 1.7% 97.1% 1.1% 100.0% 0.3% 98.1% 3.6% 98.8% 4.6% 97.9% 0.5% 97.3% 0.7% 96.4% 0.7%
16 88.1% 17.7% 98.8% 3.1% 99.6% 1.8% 99.9% 0.6% 85.2% 21.5% 93.6% 4.2% 92.3% 3.5% 99.8% 0.6% 99.9% 0.4% 90.2% 3.7% 96.1% 1.3% 95.2% 1.4% 94.8% 1.0%
32 71.5% 30.9% 95.5% 7.4% 98.7% 3.0% 99.2% 1.2% 66.7% 30.3% 84.0% 12.5% 86.9% 11.5% 99.2% 2.5% 99.9% 0.3% 86.9% 6.8% 93.8% 4.1% 92.1% 3.1% 93.8% 2.3%
64 54.9% 36.7% 87.9% 15.0% 97.0% 6.3% 97.4% 4.2% 50.2% 30.7% 61.7% 17.7% 70.7% 18.2% 99.8% 10.9% 98.9% 1.5% 82.4% 11.7% 88.3% 9.0% 88.2% 5.9% 90.3% 5.2%
128 30.0% 15.6% 82.1% 25.3% 90.9% 12.4% 93.8% 9.8% 55.5% 44.7% 59.1% 34.0% 62.4% 34.0% 89.1% 13.8% 96.0% 5.7% 78.7% 27.5% 82.1% 17.0% 75.1% 8.7% 80.3% 13.1%

Table 2: FeatureSqueezing and Hawkeye performance on CIFAR10 data with different attacks

Def QS
FGSM PGD CW

ε = 1ε0 ε = 4ε0 ε = 8ε0 ε = 16ε0 ε = 2ε0 α = 1 it = 1 ε = 2ε0 α = 1 it = 5 ε = 2ε0 α = 1 it = 10 ε = 4ε0 α = 2 it = 10 ε = 8ε0 α = 4 it = 10 c=0.4 c=2 c=10 c=50
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

FS-
ACC

2 99.6% 0.0% 96.2% 14.6% 91.8% 23.7% 100.8% 59.8% 100.0% 0.2% 100.0% 0.0% 100.0% 0.1% 99.8% 0.4% 88.9% 7.6% 59.2% 37.4% 57.4% 35.0% 49.7% 16.2% 33.6% 9.1%
4 97.3% 2.3% 82.4% 43.5% 85.0% 78.0% 0.0% 0.0% 97.1% 2.7% 99.5% 1.6% 100.0% 1.6% 98.5% 20.3% 66.8% 39.2% 71.2% 66.7% 25.2% 21.7% 29.3% 19.1% 11.5% 6.3%
8 87.3% 19.0% 87.3% 85.6% 100.0% 100.0% 0.0% 0.0% 89.0% 20.1% 98.0% 7.4% 99.0% 10.7% 95.0% 22.7% 99.7% 99.7% 90.8% 91.4% 100.0% 100.0% 0.0% 0.0% 0.0% 0.2%
16 74.6% 38.5% 98.9% 99.2% 0.0% 0.1% 100.0% 100.0% 74.2% 37.0% 87.9% 13.4% 97.0% 21.5% 84.5% 40.2% 96.8% 26.9% 72.1% 65.1% 2.8% 4.5% 0.0% 0.1% 0.0% 0.0%
32 74.4% 57.8% 91.5% 86.7% 100.0% 100.0% 0.0% 0.1% 63.3% 41.6% 85.4% 25.9% 93.4% 30.7% 95.0% 22.7% 96.4% 13.4% 72.8% 58.6% 88.7% 86.8% 0.0% 0.0% 0.1% 0.1%
64 84.8% 80.7% 87.9% 79.1% 98.7% 98.8% 100.0% 100.0% 69.4% 63.5% 75.0% 32.8% 87.4% 47.1% 95.4% 29.2% 95.7% 10.8% 72.5% 62.2% 86.3% 80.5% 88.9% 89.6% 100.0% 100.0%
128 4.4% 4.9% 100.0% 98.0% 83.6% 85.4% 65.1% 58.8% 4.3% 4.3% 58.9% 33.6% 84.5% 58.8% 91.8% 39.7% 89.1% 9.8% 89.6% 89.0% 100.0% 100.0% 76.3% 76.7% 70.3% 70.0%

FS-
FPR

2 99.5% 0.0% 97.2% 21.3% 93.1% 26.4% 31.6% 7.5% 100.0% 0.1% 100.0% 0.0% 100.0% 0.6% 99.8% 0.2% 68.3% 1.5% 55.2% 34.0% 72.1% 55.2% 65.2% 38.6% 38.7% 12.8%
4 71.3% 0.2% 83.0% 44.1% 51.2% 41.8% 6.6% 12.2% 82.4% 0.3% 98.4% 1.0% 99.9% 1.6% 88.4% 5.9% 27.1% 14.9% 43.6% 39.4% 57.2% 61.5% 51.5% 51.8% 30.8% 34.8%
8 54.1% 4.1% 51.7% 49.4% 10.0% 40.1% 2.0% 13.5% 58.2% 4.6% 79.0% 1.5% 97.1% 5.8% 32.7% 40.5% 24.9% 32.8% 45.9% 42.8% 47.8% 56.4% 36.3% 49.8% 16.4% 30.8%
16 40.6% 14.1% 40.6% 51.9% 7.5% 35.9% 0.5% 13.0% 52.5% 17.7% 69.2% 4.0% 88.6% 8.3% 73.7% 25.1% 86.2% 7.4% 36.5% 30.7% 50.3% 54.4% 21.6% 35.2% 17.4% 31.5%
32 44.4% 29.3% 51.1% 50.9% 18.1% 44.7% 0.8% 15.6% 41.6% 27.0% 65.6% 10.0% 83.5% 17.0% 92.7% 18.7% 86.2% 8.4% 32.5% 25.5% 60.5% 59.8% 33.9% 46.7% 20.8% 34.1%
64 51.1% 46.8% 66.9% 58.8% 21.3% 37.1% 3.2% 19.6% 47.3% 41.6% 47.9% 14.7% 76.3% 31.2% 88.6% 20.1% 69.8% 1.0% 34.6% 30.5% 63.9% 60.7% 44.6% 47.6% 28.6% 37.5%
128 55.8% 56.9% 59.4% 57.2% 25.9% 33.1% 11.6% 10.4% 54.1% 54.1% 39.1% 19.3% 77.7% 49.2% 88.5% 32.1% 59.6% 1.2% 37.6% 40.5% 96.0% 96.7% 41.4% 42.4% 23.0% 25.7%

HE-
GB

2 100.0% 0.4% 96.7% 11.2% 94.1% 18.1% 80.0% 9.5% 100.0% 0.6% 100.0% 0.3% 100.0% 0.9% 100.0% 1.4% 90.7% 4.2% 48.4% 26.1% 50.4% 27.1% 48.9% 12.6% 37.2% 10.6%
4 99.1% 2.5% 78.7% 28.7% 76.1% 32.8% 86.8% 26.8% 99.3% 3.3% 100.0% 1.8% 100.0% 3.5% 99.4% 7.8% 64.3% 17.0% 50.7% 33.6% 51.2% 42.7% 44.2% 35.8% 32.3% 25.7%
8 91.2% 7.9% 64.1% 36.3% 70.9% 26.3% 91.2% 26.8% 91.6% 8.7% 99.3% 4.9% 100.0% 7.8% 43.7% 27.0% 76.2% 51.7% 48.0% 29.8% 58.3% 39.8% 59.8% 40.4% 73.9% 51.9%
16 70.4% 17.2% 65.5% 36.2% 74.9% 24.1% 93.7% 20.5% 73.7% 16.5% 96.1% 7.8% 99.1% 13.4% 83.6% 18.0% 98.2% 9.2% 49.7% 26.2% 57.8% 39.8% 62.6% 33.5% 72.2% 45.3%
32 54.3% 25.3% 64.2% 35.1% 71.5% 24.5% 92.5% 24.8% 57.4% 26.5% 87.7% 11.3% 97.1% 21.0% 97.4% 14.5% 98.6% 5.3% 52.8% 26.6% 61.0% 39.5% 63.0% 35.7% 72.9% 46.9%
64 54.0% 39.6% 62.2% 38.0% 66.9% 25.0% 91.1% 28.2% 57.7% 39.6% 74.7% 15.9% 90.7% 28.6% 98.8% 15.6% 98.1% 3.6% 54.9% 32.1% 66.3% 43.1% 62.9% 37.0% 72.7% 44.1%
128 68.0% 54.6% 59.0% 32.0% 69.6% 20.2% 91.2% 16.7% 64.4% 56.0% 60.9% 22.6% 83.1% 38.3% 97.2% 22.4% 96.6% 3.2% 66.4% 50.0% 62.4% 42.7% 62.8% 35.1% 69.5% 34.8%

HE-
NN

2 99.9% 0.0% 96.1% 11.4% 94.8% 18.2% 82.1% 8.6% 99.8% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.1% 95.9% 1.9% 58.0% 33.2% 61.8% 38.2% 62.0% 24.8% 42.2% 12.6%
4 98.5% 0.4% 83.8% 30.3% 73.4% 27.6% 80.4% 14.8% 98.2% 0.6% 99.9% 0.5% 99.9% 0.5% 98.4% 2.7% 81.5% 17.3% 58.3% 38.6% 58.3% 43.9% 58.3% 33.7% 57.7% 33.8%
8 92.3% 5.8% 67.2% 35.2% 73.4% 26.1% 86.5% 13.4% 92.2% 5.1% 98.9% 1.4% 99.7% 2.6% 52.1% 25.8% 70.4% 38.8% 63.2% 41.7% 58.6% 38.7% 53.7% 33.8% 59.0% 29.3%
16 77.6% 14.9% 64.0% 35.2% 70.8% 21.3% 91.6% 11.9% 80.8% 17.7% 96.4% 4.4% 99.7% 4.5% 87.4% 15.0% 99.3% 9.4% 52.5% 29.8% 58.8% 37.5% 48.6% 21.4% 61.7% 30.9%
32 65.1% 30.5% 64.3% 33.8% 73.0% 22.3% 91.1% 13.8% 61.8% 26.3% 92.5% 10.5% 97.3% 8.6% 98.2% 10.7% 99.1% 2.8% 56.3% 25.0% 70.2% 43.5% 57.1% 28.6% 61.8% 30.8%
64 63.6% 47.5% 74.3% 41.5% 65.6% 21.9% 89.9% 19.2% 61.4% 43.9% 79.2% 14.6% 91.8% 18.3% 99.0% 10.0% 99.3% 1.9% 55.5% 29.3% 67.5% 42.7% 55.3% 30.6% 71.0% 37.0%
128 75.1% 57.6% 68.1% 37.3% 70.8% 16.3% 90.8% 12.0% 63.7% 54.5% 65.6% 19.9% 87.0% 32.0% 98.3% 15.3% 98.1% 1.6% 63.0% 40.6% 68.8% 41.9% 61.8% 28.1% 67.8% 26.9%

Table 3: FeatureSqueezing and Hawkeye performance on ImageNet data with different attacks

Def QS
FGSM PGD CW

ε = 1ε0 ε = 4ε0 ε = 8ε0 ε = 16ε0 ε = 2ε0 α = 1 it = 1 ε = 2ε0 α = 1 it = 5 ε = 2ε0 α = 1 it = 10 ε = 4ε0 α = 2 it = 10 ε = 8ε0 α = 4 it = 10 c=0.4 c=2 c=10 c=50
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

FS-
ACC

2 15.0% 12.4% 99.9% 100.0% 99.9% 100.0% 100.0% 100.0% 54.0% 39.9% 53.7% 39.1% 61.9% 28.1% 68.2% 35.3% 66.7% 43.3% 30.5% 20.8% 39.2% 29.7% 46.0% 43.2% 26.5% 24.0%
4 9.1% 6.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 63.7% 25.2% 47.7% 35.8% 57.3% 24.3% 64.0% 34.7% 73.2% 55.0% 39.3% 24.0% 38.9% 28.1% 49.5% 42.6% 67.0% 68.4%
8 99.9% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 56.2% 26.2% 58.4% 49.8% 64.2% 17.2% 72.2% 35.6% 81.9% 61.2% 41.1% 19.8% 50.6% 33.9% 45.4% 36.7% 47.6% 45.3%
16 94.8% 94.5% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0% 62.5% 34.5% 73.5% 65.3% 66.9% 14.0% 72.7% 27.0% 73.6% 49.5% 49.2% 32.3% 50.6% 33.9% 66.5% 56.9% 71.9% 69.9%
32 72.1% 65.8% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 67.8% 48.1% 67.1% 56.6% 72.2% 10.5% 73.6% 13.9% 78.2% 37.7% 52.2% 38.3% 48.7% 30.3% 61.9% 49.2% 72.0% 69.6%
64 67.5% 55.6% 100.0% 100.0% 99.9% 100.0% 0.0% 0.0% 66.3% 54.3% 70.7% 61.9% 78.2% 7.2% 81.0% 6.4% 82.7% 17.5% 52.8% 44.4% 55.3% 42.2% 58.2% 43.5% 71.2% 61.9%
128 67.2% 53.3% 97.1% 97.5% 100.0% 100.0% 0.0% 0.0% 82.9% 78.0% 69.7% 63.1% 78.6% 7.6% 85.6% 2.2% 87.2% 5.5% 71.7% 67.0% 53.0% 43.3% 67.3% 54.7% 68.9% 57.6%

FS-
FPR

2 45.5% 46.1% 14.0% 29.3% 0.9% 8.1% 0.0% 4.0% 55.0% 40.6% 38.0% 23.3% 44.7% 15.3% 32.6% 10.3% 22.2% 13.9% 50.4% 41.4% 57.5% 50.2% 53.8% 50.8% 41.4% 40.4%
4 37.0% 39.4% 4.5% 17.5% 0.2% 8.4% 0.0% 2.9% 51.8% 15.2% 41.3% 28.8% 36.3% 12.0% 32.6% 12.6% 14.1% 12.4% 52.2% 38.6% 46.2% 36.5% 45.6% 39.8% 37.7% 36.3%
8 18.6% 27.4% 0.3% 7.8% 0.0% 4.3% 0.0% 0.3% 45.2% 17.5% 20.0% 18.6% 30.9% 3.6% 4.0% 1.3% 1.8% 3.1% 48.6% 29.4% 45.3% 27.2% 38.9% 31.3% 38.4% 35.0%
16 7.6% 17.7% 0.0% 2.7% 0.0% 1.4% 0.0% 0.3% 40.1% 17.2% 9.0% 11.3% 10.5% 0.6% 0.5% 0.3% 0.0% 0.5% 39.0% 24.3% 39.3% 21.8% 32.4% 24.4% 27.6% 25.4%
32 18.9% 19.4% 0.0% 1.6% 0.0% 0.5% 0.0% 0.2% 35.4% 19.5% 10.0% 12.5% 6.6% 0.1% 1.8% 0.1% 0.0% 0.0% 46.0% 32.2% 46.6% 28.9% 25.8% 17.3% 23.6% 20.7%
64 29.1% 20.7% 0.1% 2.1% 0.0% 0.3% 0.0% 0.2% 33.6% 24.1% 11.6% 10.9% 19.3% 0.2% 7.3% 0.0% 0.2% 0.0% 41.6% 33.0% 31.4% 19.9% 25.9% 15.9% 22.1% 18.0%
128 25.4% 17.8% 0.2% 3.2% 0.0% 0.8% 0.0% 0.2% 0.4% -7.8% 16.9% 14.3% 30.8% 0.3% 19.6% 0.0% 31.1% 0.0% 39.2% 35.3% 47.8% 38.8% 38.6% 26.3% 29.2% 21.6%

HE-
GB

2 33.5% 27.7% 76.9% 44.3% 86.9% 31.6% 91.8% 18.1% 30.6% 20.1% 43.9% 24.2% 52.4% 19.3% 61.1% 22.6% 72.6% 31.3% 35.3% 27.8% 36.7% 30.3% 31.4% 26.9% 32.2% 26.1%
4 36.5% 29.3% 81.7% 47.6% 91.1% 33.9% 94.6% 18.8% 45.1% 14.1% 45.7% 27.0% 53.5% 19.9% 58.5% 23.0% 82.4% 31.1% 37.6% 25.0% 36.6% 26.9% 32.5% 23.1% 29.6% 26.4%
8 83.8% 71.1% 89.6% 49.8% 94.6% 38.0% 98.7% 17.8% 41.3% 15.0% 95.6% 79.5% 55.9% 11.0% 68.5% 19.4% 99.6% 75.0% 37.8% 18.3% 40.1% 22.1% 54.4% 40.5% 57.9% 47.9%
16 84.1% 70.2% 92.9% 42.7% 97.8% 31.4% 98.6% 17.3% 40.2% 16.9% 93.0% 77.1% 58.8% 8.0% 67.4% 15.1% 99.3% 73.5% 36.0% 20.7% 43.2% 24.7% 93.3% 87.7% 89.5% 83.8%
32 84.3% 74.0% 91.2% 34.6% 96.5% 22.6% 97.8% 12.2% 40.2% 22.4% 96.5% 70.9% 67.1% 9.1% 73.4% 11.0% 80.3% 19.6% 40.6% 26.9% 46.4% 26.8% 56.8% 36.8% 87.4% 77.3%
64 71.4% 39.0% 85.6% 35.7% 95.6% 19.1% 96.5% 9.1% 42.8% 30.2% 91.1% 47.0% 78.5% 8.5% 86.7% 8.3% 85.4% 12.9% 45.0% 34.7% 48.9% 31.0% 53.0% 31.8% 58.3% 34.4%
128 69.9% 38.1% 83.6% 30.5% 92.0% 15.5% 95.8% 4.1% 51.9% 43.6% 74.5% 25.6% 88.1% 9.3% 96.6% 5.9% 98.2% 7.6% 53.7% 47.0% 57.3% 42.8% 57.9% 38.9% 61.2% 36.6%

HE-
NN

2 66.9% 48.9% 77.2% 31.3% 80.7% 13.1% 92.4% 7.1% 61.0% 47.3% 64.6% 29.3% 80.8% 20.5% 83.2% 14.8% 89.8% 15.6% 54.6% 44.9% 61.3% 53.1% 62.3% 54.5% 56.8% 45.2%
4 57.3% 44.6% 77.2% 24.3% 90.8% 16.0% 94.2% 6.1% 67.9% 26.4% 68.2% 35.8% 85.6% 18.4% 87.7% 18.9% 89.8% 17.4% 60.7% 44.5% 61.4% 41.5% 62.6% 48.2% 57.1% 43.0%
8 76.6% 37.2% 88.0% 17.3% 93.2% 13.5% 96.6% 4.7% 67.5% 29.8% 78.9% 29.9% 92.3% 11.7% 94.4% 7.1% 95.4% 9.7% 60.2% 39.0% 62.1% 37.6% 63.8% 41.0% 64.7% 45.4%
16 77.3% 28.4% 91.8% 10.5% 96.6% 8.0% 97.8% 2.4% 76.6% 29.8% 79.3% 22.5% 97.5% 4.6% 97.0% 2.5% 97.1% 3.6% 53.2% 35.4% 56.8% 33.2% 63.8% 35.7% 64.1% 38.4%
32 75.7% 30.8% 93.6% 7.0% 98.0% 5.2% 97.9% 2.0% 67.2% 32.9% 86.0% 20.5% 97.9% 2.0% 98.9% 1.0% 98.7% 1.4% 58.8% 42.2% 64.4% 39.2% 60.4% 28.5% 60.5% 33.0%
64 74.6% 30.6% 95.2% 6.8% 97.5% 3.8% 99.1% 1.4% 62.4% 37.1% 84.3% 20.2% 97.7% 1.6% 99.1% 0.4% 99.3% 0.1% 59.0% 44.4% 55.5% 30.8% 58.6% 26.6% 58.1% 30.0%
128 72.3% 27.8% 93.0% 8.0% 97.8% 4.1% 99.4% 1.3% 13.6% 1.8% 80.5% 25.3% 98.0% 1.7% 98.9% 0.2% 99.2% 0.4% 55.5% 46.6% 63.8% 49.0% 64.6% 38.4% 62.3% 34.6%
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Table 4: White-Box attack to FeatureSqueezing

White-Box attack c=2, c2=0.02, s=2 c=2, c2=0.1, s=2 c=2, c2=0.02, s=2,4 c=2, c2=0.1, s=2,4
ASR 49% 57% 44% 52%
L2 0.225 0.256 0.244 0.279
L∞ 0.038 0.038 0.042 0.050

Defense

QS TPR FPR TPR FPR TPR FPR TPR FPR
2 2% 0% 3% 1% 0% 0% 0% 1%
4 84% 2% 84% 1% 0% 2% 1% 1%
8 87% 0% 85% 3% 76% 0% 73% 3%
16 79% 2% 78% 0% 78% 2% 78% 0%
32 70% 6% 67% 6% 70% 2% 67% 3%
64 56% 16% 62% 17% 57% 13% 62% 17%
128 56% 53% 56% 39% 55% 53% 56% 42%
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